Saturday, January 10, 2009

Radio

Radio is the transmission of signals, by modulation of electromagnetic waves with frequencies below those of visible light. Electromagnetic radiation travels by means of oscillating electromagnetic fields that pass through the air and the vacuum of space. Information is carried by systematically changing (modulating) some property of the radiated waves, such as amplitude, frequency, or phase. When radio waves pass an electrical conductor, the oscillating fields induce an alternating current in the conductor. This can be detected and transformed into sound or other signals that carry information.

Originally, radio or radiotelegraphy was called "wireless telegraphy", which was shortened to "wireless". The prefix radio- in the sense of wireless transmission, was first recorded in the word radioconductor, coined by the French physicist Edouard Branly in 1897 and based on the verb to radiate (in Latin "radius" means "spoke of a wheel, beam of light, ray"). "Radio" as a noun is said to have been coined by advertising expert Waldo Warren (White 1944). The word appears in a 1907 article by Lee de Forest, was adopted by the United States Navy in 1912 and became common by the time of the first commercial broadcasts in the United States in the 1920s. (The noun "broadcasting" itself came from an agricultural term, meaning "scattering seeds".) The term was then adopted by other languages in Europe and Asia, although British Commonwealth countries continued to use the term "wireless" until the mid-20th century.

In recent years the term "wireless" has gained renewed popularity through the rapid growth of short-range computer networking, e.g., Wireless Local Area Network (WLAN), WiFi and Bluetooth, as well as mobile telephony, e.g., GSM and UMTS. Today, the term "radio" often refers to the actual transceiver device or chip, whereas "wireless" refers to the system and/or method used for radio communication, hence one talks about radio transceivers and Radio Frequency Identification (RFID), but about wireless devices and wireless sensor networks.

Radio systems used for communications will have the following elements. With more than 100 years of development, each process is implemented by a wide range of methods, specialized for different communications purposes.Each system contains a transmitter. This consists of a source of electrical energy, producing alternating current of a desired frequency of oscillation. The transmitter contains a system to modulate (change) some property of the energy produced to impress a signal on it. This modulation might be as simple as turning the energy on and off, or altering more subtle properties such as amplitude, frequency, phase, or combinations of these properties. The transmitter sends the modulated electrical energy to an antenna; this structure converts the rapidly-changing alternating current into an electromagnetic wave that can move through free space.

Electromagnetic waves travel through space either directly, or have their path altered by reflection, refraction or diffraction. The intensity of the waves diminishes due to geometric dispersion (the inverse-square law); some energy may also be absorbed by the intervening medium in some cases. Noise will generally alter the desired signal; this electromagnetic interference comes from natural sources, as well as from artificial sources such as other transmitters and accidental radiators. Noise is also produced at every step due to the inherent properties of the devices used. If the magnitude of the noise is large enough, the desired signal will no longer be discernible; this is the fundamental limit to the range of radio communications.

The electromagnetic wave is intercepted by a receiving antenna; this structure captures some of the energy of the wave and returns it to the form of oscillating electrical currents. At the receiver, these currents are demodulated, which is conversion to a usable signal form by a detector sub-system. The receiver is "tuned" to respond preferentially to the desired signals, and reject undesired signals.

Early radio systems relied entirely on the energy collected by an antenna to produce signals for the operator. Radio became more useful after the invention of electronic devices such as the vacuum tube and later the transistor, which made it possible to amplify weak signals. Today radio systems are used for applications from walkie-talkie children's toys to the control of space vehicles, as well as for broadcasting, and many other applications.

No comments:

Post a Comment